--- license: mit base_model: microsoft/xtremedistil-l6-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xtremedistil-l6-h384-uncased-v5.0 results: [] --- # xtremedistil-l6-h384-uncased-v5.0 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5748 - F1 Macro: 0.6478 - F1 Micro: 0.6513 - Accuracy Balanced: 0.6608 - Accuracy: 0.6513 - Precision Macro: 0.6723 - Recall Macro: 0.6608 - Precision Micro: 0.6513 - Recall Micro: 0.6513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 40 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.6487 | 0.85 | 200 | 0.6075 | 0.5947 | 0.6188 | 0.6447 | 0.6188 | 0.7143 | 0.6447 | 0.6188 | 0.6188 | | 0.6417 | 1.69 | 400 | 0.5900 | 0.6186 | 0.6257 | 0.6423 | 0.6257 | 0.6622 | 0.6423 | 0.6257 | 0.6257 | | 0.6328 | 2.54 | 600 | 0.5822 | 0.6477 | 0.6485 | 0.6574 | 0.6485 | 0.6613 | 0.6574 | 0.6485 | 0.6485 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.562|0.701|0.579|0.575| |eval_f1_macro|0.666|0.478|0.645|0.648| |eval_f1_micro|0.67|0.479|0.648|0.651| |eval_accuracy_balanced|0.684|0.481|0.662|0.661| |eval_accuracy|0.67|0.479|0.648|0.651| |eval_precision_macro|0.702|0.48|0.674|0.672| |eval_recall_macro|0.684|0.481|0.662|0.661| |eval_precision_micro|0.67|0.479|0.648|0.651| |eval_recall_micro|0.67|0.479|0.648|0.651| |eval_runtime|9.241|0.208|1.943|7.696| |eval_samples_per_second|919.801|4553.642|972.241|981.982| |eval_steps_per_second|7.25|38.509|7.72|7.797| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3