--- license: mit base_model: microsoft/xtremedistil-l6-h384-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: xtremedistil-l6-h384-uncased-v1.1 results: [] --- # xtremedistil-l6-h384-uncased-v1.1 This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5278 - F1 Macro: 0.6999 - F1 Micro: 0.7000 - Accuracy Balanced: 0.7017 - Accuracy: 0.7000 - Precision Macro: 0.7009 - Recall Macro: 0.7017 - Precision Micro: 0.7000 - Recall Micro: 0.7000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 128 - seed: 40 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.511|0.701|0.539|0.528| |eval_f1_macro|0.717|0.488|0.684|0.7| |eval_f1_micro|0.718|0.506|0.684|0.7| |eval_accuracy_balanced|0.719|0.501|0.687|0.702| |eval_accuracy|0.718|0.506|0.684|0.7| |eval_precision_macro|0.718|0.501|0.686|0.701| |eval_recall_macro|0.719|0.501|0.687|0.702| |eval_precision_micro|0.718|0.506|0.684|0.7| |eval_recall_micro|0.718|0.506|0.684|0.7| |eval_runtime|8.805|0.188|1.873|7.442| |eval_samples_per_second|965.397|5039.361|1008.401|1015.398| |eval_steps_per_second|7.61|42.616|8.007|8.062| |Size of dataset|8500|946|1889|7557| ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.511|0.701|0.539|0.528| |eval_f1_macro|0.717|0.488|0.684|0.7| |eval_f1_micro|0.718|0.506|0.684|0.7| |eval_accuracy_balanced|0.719|0.501|0.687|0.702| |eval_accuracy|0.718|0.506|0.684|0.7| |eval_precision_macro|0.718|0.501|0.686|0.701| |eval_recall_macro|0.719|0.501|0.687|0.702| |eval_precision_micro|0.718|0.506|0.684|0.7| |eval_recall_micro|0.718|0.506|0.684|0.7| |eval_runtime|8.405|0.176|1.864|7.407| |eval_samples_per_second|1011.367|5358.555|1013.595|1020.275| |eval_steps_per_second|7.972|45.315|8.049|8.101| |epoch|3.0|3.0|3.0|3.0| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3