--- license: mit base_model: joeddav/xlm-roberta-large-xnli tags: - generated_from_trainer metrics: - accuracy model-index: - name: xlm-roberta-large-xnli-v4.0 results: [] --- # xlm-roberta-large-xnli-v4.0 This model is a fine-tuned version of [joeddav/xlm-roberta-large-xnli](https://huggingface.co/joeddav/xlm-roberta-large-xnli) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4963 - F1 Macro: 0.8192 - F1 Micro: 0.8204 - Accuracy Balanced: 0.8190 - Accuracy: 0.8204 - Precision Macro: 0.8193 - Recall Macro: 0.8190 - Precision Micro: 0.8204 - Recall Micro: 0.8204 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 9e-06 - train_batch_size: 8 - eval_batch_size: 64 - seed: 40 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| | 0.3593 | 1.69 | 200 | 0.4297 | 0.8211 | 0.8218 | 0.8224 | 0.8218 | 0.8206 | 0.8224 | 0.8218 | 0.8218 | ### eval result |Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| | :---: | :---: | :---: | :---: | :---: | |eval_loss|0.494|0.773|0.521|0.522| |eval_f1_macro|0.821|0.627|0.805|0.803| |eval_f1_micro|0.822|0.644|0.806|0.803| |eval_accuracy_balanced|0.821|0.638|0.806|0.804| |eval_accuracy|0.822|0.644|0.806|0.803| |eval_precision_macro|0.821|0.663|0.804|0.803| |eval_recall_macro|0.821|0.638|0.806|0.804| |eval_precision_micro|0.822|0.644|0.806|0.803| |eval_recall_micro|0.822|0.644|0.806|0.803| |eval_runtime|50.601|0.613|11.113|44.097| |eval_samples_per_second|167.982|1543.156|169.983|171.37| |eval_steps_per_second|2.628|24.469|2.7|2.699| |Size of dataset|8500|946|1889|7557| ### Framework versions - Transformers 4.33.3 - Pytorch 2.5.1+cu121 - Datasets 2.14.7 - Tokenizers 0.13.3