--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned-raw results: [] --- # xlm-roberta-base-finetuned-raw This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5130 - Accuracy: 0.8563 - F1: 0.8551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.2557 | 1.0 | 1699 | 0.7169 | 0.7858 | 0.7805 | | 0.6384 | 2.0 | 3398 | 0.5732 | 0.8285 | 0.8251 | | 0.4814 | 3.0 | 5097 | 0.5527 | 0.8382 | 0.8368 | | 0.3813 | 4.0 | 6796 | 0.5146 | 0.8527 | 0.8505 | | 0.3156 | 5.0 | 8495 | 0.5130 | 0.8563 | 0.8551 | ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1