--- base_model: microsoft/codebert-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: codebert-code-clone-detector results: [] license: mit pipeline_tag: sentence-similarity --- # codebert-code-clone-detector This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on a Code Clone Benchmark dataset. See this [github repository](https://github.com/LucK1Y/CodeCloneBERT) for more information. It achieves the following results on the evaluation set: - Loss: 0.3452 - Accuracy: 0.9525 - Precision: 0.9544 - Recall: 0.9496 - F1: 0.9520 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.3416 | 0.49 | 33 | 0.1724 | 0.9417 | 0.9828 | 0.9048 | 0.9421 | | 0.221 | 0.97 | 66 | 0.2768 | 0.925 | 1.0 | 0.8571 | 0.9231 | | 0.0929 | 1.46 | 99 | 0.2469 | 0.9583 | 1.0 | 0.9206 | 0.9587 | | 0.1696 | 1.94 | 132 | 0.2142 | 0.95 | 0.9524 | 0.9524 | 0.9524 | | 0.0818 | 2.43 | 165 | 0.4142 | 0.925 | 1.0 | 0.8571 | 0.9231 | | 0.0676 | 2.91 | 198 | 0.3539 | 0.9333 | 0.9508 | 0.9206 | 0.9355 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2