File size: 1,995 Bytes
c7c8d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7084848
 
 
 
 
 
c7c8d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7084848
c7c8d8e
 
7084848
c7c8d8e
 
 
 
 
7084848
 
 
 
c7c8d8e
 
 
 
 
7084848
c7c8d8e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: mit
base_model: facebook/bart-large-xsum
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart_samsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart_samsum

This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.6994
- Rouge1: 54.5529
- Rouge2: 30.0179
- Rougel: 45.3837
- Rougelsum: 50.4176
- Gen Len: 28.967

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 4
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum | Gen Len |
|:-------------:|:------:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 2.7327        | 0.9997 | 1841 | 2.7677          | 52.2923 | 27.6237 | 43.1558 | 48.08     | 30.4005 |
| 2.4597        | 2.0    | 3683 | 2.7286          | 53.4085 | 28.7235 | 44.5737 | 49.3042   | 29.3004 |
| 2.2042        | 2.9997 | 5524 | 2.7436          | 53.6036 | 28.857  | 44.7337 | 49.2789   | 28.4188 |
| 2.1096        | 3.9989 | 7364 | 2.7886          | 53.0547 | 28.3597 | 44.0648 | 48.804    | 29.5165 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1