# -------------------------------------------------------- # UniFormer # Copyright (c) 2022 SenseTime X-Lab # Licensed under The MIT License [see LICENSE for details] # Written by Kunchang Li # -------------------------------------------------------- import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint from functools import partial from collections import OrderedDict from timm.models.layers import DropPath, to_2tuple, trunc_normal_ try: from mmseg.utils import get_root_logger from mmseg.models.builder import BACKBONES except ImportError: from annotator.mmpkg.mmseg.utils import get_root_logger from annotator.mmpkg.mmseg.models.builder import BACKBONES from annotator.uniformer.mmcv_custom import load_checkpoint class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CMlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Conv2d(in_features, hidden_features, 1) self.act = act_layer() self.fc2 = nn.Conv2d(hidden_features, out_features, 1) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class CBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = nn.BatchNorm2d(dim) self.conv1 = nn.Conv2d(dim, dim, 1) self.conv2 = nn.Conv2d(dim, dim, 1) self.attn = nn.Conv2d(dim, dim, 5, padding=2, groups=dim) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = nn.BatchNorm2d(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = CMlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x + self.drop_path(self.conv2(self.attn(self.conv1(self.norm1(x))))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class SABlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) B, N, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.transpose(1, 2).reshape(B, N, H, W) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class SABlock_Windows(nn.Module): def __init__(self, dim, num_heads, window_size=14, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.window_size=window_size self.pos_embed = nn.Conv2d(dim, dim, 3, padding=1, groups=dim) self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.pos_embed(x) x = x.permute(0, 2, 3, 1) B, H, W, C = x.shape shortcut = x x = self.norm1(x) pad_l = pad_t = 0 pad_r = (self.window_size - W % self.window_size) % self.window_size pad_b = (self.window_size - H % self.window_size) % self.window_size x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = x.shape x_windows = window_partition(x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C # reverse cyclic shift if pad_r > 0 or pad_b > 0: x = x[:, :H, :W, :].contiguous() x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) x = x.permute(0, 3, 1, 2).reshape(B, C, H, W) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.norm = nn.LayerNorm(embed_dim) self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, _, H, W = x.shape x = self.proj(x) B, _, H, W = x.shape x = x.flatten(2).transpose(1, 2) x = self.norm(x) x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous() return x @BACKBONES.register_module() class UniFormer(nn.Module): """ Vision Transformer A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` - https://arxiv.org/abs/2010.11929 """ def __init__(self, layers=[3, 4, 8, 3], img_size=224, in_chans=3, num_classes=80, embed_dim=[64, 128, 320, 512], head_dim=64, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=partial(nn.LayerNorm, eps=1e-6), pretrained_path=None, use_checkpoint=False, checkpoint_num=[0, 0, 0, 0], windows=False, hybrid=False, window_size=14): """ Args: layer (list): number of block in each layer img_size (int, tuple): input image size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension head_dim (int): dimension of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer (nn.Module): normalization layer pretrained_path (str): path of pretrained model use_checkpoint (bool): whether use checkpoint checkpoint_num (list): index for using checkpoint in every stage windows (bool): whether use window MHRA hybrid (bool): whether use hybrid MHRA window_size (int): size of window (>14) """ super().__init__() self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.checkpoint_num = checkpoint_num self.windows = windows print(f'Use Checkpoint: {self.use_checkpoint}') print(f'Checkpoint Number: {self.checkpoint_num}') self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.patch_embed1 = PatchEmbed( img_size=img_size, patch_size=4, in_chans=in_chans, embed_dim=embed_dim[0]) self.patch_embed2 = PatchEmbed( img_size=img_size // 4, patch_size=2, in_chans=embed_dim[0], embed_dim=embed_dim[1]) self.patch_embed3 = PatchEmbed( img_size=img_size // 8, patch_size=2, in_chans=embed_dim[1], embed_dim=embed_dim[2]) self.patch_embed4 = PatchEmbed( img_size=img_size // 16, patch_size=2, in_chans=embed_dim[2], embed_dim=embed_dim[3]) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(layers))] # stochastic depth decay rule num_heads = [dim // head_dim for dim in embed_dim] self.blocks1 = nn.ModuleList([ CBlock( dim=embed_dim[0], num_heads=num_heads[0], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(layers[0])]) self.norm1=norm_layer(embed_dim[0]) self.blocks2 = nn.ModuleList([ CBlock( dim=embed_dim[1], num_heads=num_heads[1], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]], norm_layer=norm_layer) for i in range(layers[1])]) self.norm2 = norm_layer(embed_dim[1]) if self.windows: print('Use local window for all blocks in stage3') self.blocks3 = nn.ModuleList([ SABlock_Windows( dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) for i in range(layers[2])]) elif hybrid: print('Use hybrid window for blocks in stage3') block3 = [] for i in range(layers[2]): if (i + 1) % 4 == 0: block3.append(SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) else: block3.append(SABlock_Windows( dim=embed_dim[2], num_heads=num_heads[2], window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer)) self.blocks3 = nn.ModuleList(block3) else: print('Use global window for all blocks in stage3') self.blocks3 = nn.ModuleList([ SABlock( dim=embed_dim[2], num_heads=num_heads[2], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]], norm_layer=norm_layer) for i in range(layers[2])]) self.norm3 = norm_layer(embed_dim[2]) self.blocks4 = nn.ModuleList([ SABlock( dim=embed_dim[3], num_heads=num_heads[3], mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i+layers[0]+layers[1]+layers[2]], norm_layer=norm_layer) for i in range(layers[3])]) self.norm4 = norm_layer(embed_dim[3]) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() self.apply(self._init_weights) self.init_weights(pretrained=pretrained_path) def init_weights(self, pretrained): if isinstance(pretrained, str): logger = get_root_logger() load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger) print(f'Load pretrained model from {pretrained}') def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): out = [] x = self.patch_embed1(x) x = self.pos_drop(x) for i, blk in enumerate(self.blocks1): if self.use_checkpoint and i < self.checkpoint_num[0]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm1(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed2(x) for i, blk in enumerate(self.blocks2): if self.use_checkpoint and i < self.checkpoint_num[1]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm2(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed3(x) for i, blk in enumerate(self.blocks3): if self.use_checkpoint and i < self.checkpoint_num[2]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm3(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) x = self.patch_embed4(x) for i, blk in enumerate(self.blocks4): if self.use_checkpoint and i < self.checkpoint_num[3]: x = checkpoint.checkpoint(blk, x) else: x = blk(x) x_out = self.norm4(x.permute(0, 2, 3, 1)) out.append(x_out.permute(0, 3, 1, 2).contiguous()) return tuple(out) def forward(self, x): x = self.forward_features(x) return x