import cv2 import numpy as np import torch from einops import rearrange from .api import MiDaSInference from modules import devices model = None def unload_midas_model(): global model if model is not None: model = model.cpu() def apply_midas(input_image, a=np.pi * 2.0, bg_th=0.1): global model if model is None: model = MiDaSInference(model_type="dpt_hybrid") if devices.get_device_for("controlnet").type != 'mps': model = model.to(devices.get_device_for("controlnet")) assert input_image.ndim == 3 image_depth = input_image with torch.no_grad(): image_depth = torch.from_numpy(image_depth).float() if devices.get_device_for("controlnet").type != 'mps': image_depth = image_depth.to(devices.get_device_for("controlnet")) image_depth = image_depth / 127.5 - 1.0 image_depth = rearrange(image_depth, 'h w c -> 1 c h w') depth = model(image_depth)[0] depth_pt = depth.clone() depth_pt -= torch.min(depth_pt) depth_pt /= torch.max(depth_pt) depth_pt = depth_pt.cpu().numpy() depth_image = (depth_pt * 255.0).clip(0, 255).astype(np.uint8) depth_np = depth.cpu().numpy() x = cv2.Sobel(depth_np, cv2.CV_32F, 1, 0, ksize=3) y = cv2.Sobel(depth_np, cv2.CV_32F, 0, 1, ksize=3) z = np.ones_like(x) * a x[depth_pt < bg_th] = 0 y[depth_pt < bg_th] = 0 normal = np.stack([x, y, z], axis=2) normal /= np.sum(normal ** 2.0, axis=2, keepdims=True) ** 0.5 normal_image = (normal * 127.5 + 127.5).clip(0, 255).astype(np.uint8)[:, :, ::-1] return depth_image, normal_image