--- tags: - image-classification - timm library_name: timm license: other license_name: lunit-non-commercial license_link: https://github.com/lunit-io/benchmark-ssl-pathology/blob/main/LICENSE datasets: - 1aurent/BACH - 1aurent/NCT-CRC-HE - 1aurent/PatchCamelyon pipeline_tag: image-classification --- # Model card for vit_small_patch16_224.lunit_dino A Vision Transformer (ViT) image classification model. \ Trained on 33M histology patches from various pathology datasets. ![](https://github.com/lunit-io/benchmark-ssl-pathology/raw/main/assets/ssl_teaser.png) ## Model Details - **Model Type:** Feature backbone - **SSL Method:** DINO - **Model Stats:** - Params (M): 21.1 - Image sizes: 224 × 224 x 3 - **Papers:** - Benchmarking Self-Supervised Learning on Diverse Pathology Datasets: https://arxiv.org/abs/2212.04690 - **Datasets:** - BACH - CRC - MHIST - PatchCamelyon - CoNSeP - **Original:** https://github.com/lunit-io/benchmark-ssl-pathology - **License:** [lunit-non-commercial](https://github.com/lunit-io/benchmark-ssl-pathology/blob/main/LICENSE) ## Model Usage ### Image Embeddings ```python from urllib.request import urlopen from PIL import Image import timm # get example histology image img = Image.open( urlopen( "https://github.com/owkin/HistoSSLscaling/raw/main/assets/example.tif" ) ) # load model from the hub model = timm.create_model( model_name="hf-hub:1aurent/vit_small_patch16_224.lunit_dino", pretrained=True, ).eval() # get model specific transforms (normalization, resize) data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor ``` ## Citation ```bibtex @inproceedings{kang2022benchmarking, author = {Kang, Mingu and Song, Heon and Park, Seonwook and Yoo, Donggeun and Pereira, Sérgio}, title = {Benchmarking Self-Supervised Learning on Diverse Pathology Datasets}, booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2023}, pages = {3344-3354} } ```