yi-01-ai
commited on
Commit
•
6bebd1c
1
Parent(s):
b1064b0
Auto Sync from git://github.com/01-ai/Yi.git/commit/e3e47d27d65641181e2aeb600304181dd2a7230a
Browse files
README.md
CHANGED
@@ -860,7 +860,7 @@ python quantization/gptq/eval_quantized_model.py \
|
|
860 |
--trust_remote_code
|
861 |
```
|
862 |
|
863 |
-
<details style="display: inline;"><summary>For
|
864 |
|
865 |
#### GPT-Q quantization
|
866 |
|
@@ -885,7 +885,6 @@ python quant_autogptq.py --model /base_model \
|
|
885 |
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
|
886 |
```
|
887 |
|
888 |
-
|
889 |
##### Run Quantized Model
|
890 |
|
891 |
You can run a quantized model using the `eval_quantized_model.py`:
|
@@ -897,6 +896,7 @@ python eval_quantized_model.py --model /quantized_model --trust_remote_code
|
|
897 |
</details>
|
898 |
|
899 |
#### AWQ
|
|
|
900 |
```bash
|
901 |
python quantization/awq/quant_autoawq.py \
|
902 |
--model /base_model \
|
@@ -1017,7 +1017,9 @@ At the same time, we also warmly invite you to join our collaborative effort by
|
|
1017 |
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
|
1018 |
|
1019 |
#### Tutorials
|
|
|
1020 |
##### English tutorials
|
|
|
1021 |
| Type | Deliverable | Date | Author |
|
1022 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
1023 |
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
|
@@ -1025,8 +1027,8 @@ With all these resources at your fingertips, you're ready to start your exciting
|
|
1025 |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
|
1026 |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
|
1027 |
|
1028 |
-
|
1029 |
##### Chinese tutorials
|
|
|
1030 |
| Type | Deliverable | Date | Author |
|
1031 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
1032 |
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
|
@@ -1160,8 +1162,8 @@ For detailed capabilities of the Yi series model, see [Yi: Open Foundation Model
|
|
1160 |
|
1161 |
## Benchmarks
|
1162 |
|
1163 |
-
- [Chat model performance](
|
1164 |
-
- [Base model performance](
|
1165 |
|
1166 |
### Chat model performance
|
1167 |
|
@@ -1208,19 +1210,19 @@ Yi-9B is almost the best among a range of similar-sized open-source models (incl
|
|
1208 |
|
1209 |
- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
1210 |
|
1211 |
-
![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
|
1212 |
|
1213 |
- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
1214 |
|
1215 |
-
![Yi-9B benchmark - code](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_code.png?raw=true)
|
1216 |
|
1217 |
- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
1218 |
|
1219 |
-
![Yi-9B benchmark - math](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_math.png?raw=true)
|
1220 |
|
1221 |
- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
1222 |
|
1223 |
-
![Yi-9B benchmark - text](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_text.png?raw=true)
|
1224 |
|
1225 |
<p align="right"> [
|
1226 |
<a href="#top">Back to top ⬆️ </a> ]
|
|
|
860 |
--trust_remote_code
|
861 |
```
|
862 |
|
863 |
+
<details style="display: inline;"><summary>For details, see the explanations below. ⬇️</summary> <ul>
|
864 |
|
865 |
#### GPT-Q quantization
|
866 |
|
|
|
885 |
--output_dir /quantized_model --bits 4 --group_size 128 --trust_remote_code
|
886 |
```
|
887 |
|
|
|
888 |
##### Run Quantized Model
|
889 |
|
890 |
You can run a quantized model using the `eval_quantized_model.py`:
|
|
|
896 |
</details>
|
897 |
|
898 |
#### AWQ
|
899 |
+
|
900 |
```bash
|
901 |
python quantization/awq/quant_autoawq.py \
|
902 |
--model /base_model \
|
|
|
1017 |
With all these resources at your fingertips, you're ready to start your exciting journey with Yi. Happy learning! 🥳
|
1018 |
|
1019 |
#### Tutorials
|
1020 |
+
|
1021 |
##### English tutorials
|
1022 |
+
|
1023 |
| Type | Deliverable | Date | Author |
|
1024 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
1025 |
| Video | [Run dolphin-2.2-yi-34b on IoT Devices](https://www.youtube.com/watch?v=NJ89T5mO25Y) | 2023-11-30 | [Second State](https://github.com/second-state) |
|
|
|
1027 |
| Video | [Install Yi 34B Locally - Chinese English Bilingual LLM](https://www.youtube.com/watch?v=CVQvj4Wrh4w&t=476s) | 2023-11-05 | [Fahd Mirza](https://www.youtube.com/@fahdmirza) |
|
1028 |
| Video | [Dolphin Yi 34b - Brand New Foundational Model TESTED](https://www.youtube.com/watch?v=On3Zuv27V3k&t=85s) | 2023-11-27 | [Matthew Berman](https://www.youtube.com/@matthew_berman) |
|
1029 |
|
|
|
1030 |
##### Chinese tutorials
|
1031 |
+
|
1032 |
| Type | Deliverable | Date | Author |
|
1033 |
|-------------|--------------------------------------------------------|----------------|----------------|
|
1034 |
| Blog | [实测零一万物Yi-VL多模态语言模型:能准确“识图吃瓜”](https://mp.weixin.qq.com/s/fu4O9XvJ03JhimsEyI-SsQ) | 2024-02-02 | [苏洋](https://github.com/soulteary) |
|
|
|
1162 |
|
1163 |
## Benchmarks
|
1164 |
|
1165 |
+
- [Chat model performance](#chat-model-performance)
|
1166 |
+
- [Base model performance](#base-model-performance)
|
1167 |
|
1168 |
### Chat model performance
|
1169 |
|
|
|
1210 |
|
1211 |
- In terms of **overall** ability (Mean-All), Yi-9B performs the best among similarly sized open-source models, surpassing DeepSeek-Coder, DeepSeek-Math, Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
1212 |
|
1213 |
+
![Yi-9B benchmark - overall](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_overall.png?raw=true)
|
1214 |
|
1215 |
- In terms of **coding** ability (Mean-Code), Yi-9B's performance is second only to DeepSeek-Coder-7B, surpassing Yi-34B, SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
1216 |
|
1217 |
+
![Yi-9B benchmark - code](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_code.png?raw=true)
|
1218 |
|
1219 |
- In terms of **math** ability (Mean-Math), Yi-9B's performance is second only to DeepSeek-Math-7B, surpassing SOLAR-10.7B, Mistral-7B, and Gemma-7B.
|
1220 |
|
1221 |
+
![Yi-9B benchmark - math](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_math.png?raw=true)
|
1222 |
|
1223 |
- In terms of **common sense and reasoning** ability (Mean-Text), Yi-9B's performance is on par with Mistral-7B, SOLAR-10.7B, and Gemma-7B.
|
1224 |
|
1225 |
+
![Yi-9B benchmark - text](https://github.com/01-ai/Yi/blob/main/assets/img/Yi-9B_benchmark_text.png?raw=true)
|
1226 |
|
1227 |
<p align="right"> [
|
1228 |
<a href="#top">Back to top ⬆️ </a> ]
|